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Upper Bound Calculations on Capacitance of
Microstrip Line Using Variational Method

and Spectral Domain Approach
KIYOMICHI A.RAKI AND YCEHIYUK1 ~i%~~~, SENIOR MEMBER, IEEE

Abstract—Io this paper, the authors have employed an md@id ap-

proach based on the Fourier @wfomation amd mriatkmd techniques frr

terms of the surface petentkd of the diekctrk sheet to find the upper

bounds of the rrkrostrip he capacitance. It k hoped that our work will

complement that of Yamashita et aL [5], who calcotated the Sower bormsls

cleating with the charge density on the surface of the conductor strip, in

estimating the margins of error in dculation.

1. INTRODUCTION

A LTHOUGH microwave circuits were based on the

waveguide system until the mid 1960’s, the strip line

system is now finding extensive application because of its

light weight and handiness. A variety of strip line struc-

tures are in use, especially the microstrip line shown in

Fig. l(a).

An exact ana~ysis based on a hybrid mode is desirable

in determining the parameters of the microstrip line in the

frequencies over around 10 GHz. However, in the

frequency ranges under X band, a quasi-T13M wave ap-

proximation is useful enough. By means of quasi-TIWl

assumptions, the line capacitance values can be employed

in calculating the characteristic impedance and the guide

wavelength, so that it is necessary only to solve the

two-dimensional Laplace equation over the cross section

of the line.

several solutions for the two-dimensional boundary
value problem involving two different media are ah-eady

known, for example, the modified con formal mapping

method [1], the integral equation method [2], [3j, the

relaxation method [4], and the variational method [5].

Recently, Wheeler [6] has given, with the extensive tables,

the simple explicit formulae for the characteristic imped-

ance and the guide wavelength as well as the attenuation

of the microstrip line.

Among them, the variational method provides not only

a highly precise calculation but also the upper and the
lower bounds on true values so that the margins of error

in the calculation can be estimated.

An analytical approach based on the Fourier transform

and variational techniques was initiated by Yamashita et

al. [5] in 1968. In their paper, they calculated the lower

bounds of the line capacitance dealing with the charge

density on the surface of the conductor strip.
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Fig. 1. l’anous strip lines.

Strictly speaking, not only the lower bounds but also

the upper bounds have to be examined to obtain an

approximate value through the variational method. This is

because a trial function cannot always be reliable. To
contain the margins of error within certain range, both

bounds are necessary.

In this paper, an analytical approach based on the

Fourier transform and variational techniques to find the

upper bounds of the microstrip line capacitance will be

discussed in terms of the surface potential of the dielectric

sheet.

11. ANALYSIS

It is profitable to use the Fourier transform in the

analysis of open structure transmission line shown in Fig.

2.
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Fig. 2. Line structure.

At first, the Fourier transform is applied to all field

quantities, i.e., static potential distributions $, (x,y) (i=

1,2) in the dielectric region as well as in the air region,

and V(x) on the interface, respectively.

ti(~)=fm ~(X)@x dx. (2)
–w

The static potential distributions +i(x,y) (r’= 1, 2) satisfy

the Laplace equation in the individual regions:

(5+$)+(X’)=”(3)

Therefore, the transformed potential distributions &( ~,y)

(i= 1,2) satisfy the following ordinary differential equa-

tion:

(4)

Considering the boundary conditions at both the ground

plane and the infinity as well as the continuity condition

on the interface (at y = h), ii ( ~,y) can be expressed in

terms of ;(~) with the following equations:

the energy in the dielectric region is expressed also in

terms of P(~). Thus:

(8)

where c* designates a dielectric constant of the substrate.

Similarly, the energy stored in the air region is given by

(9):

(9)

Accordingly, the total energy can be expressed by ;(~).

We= Wel + We2

On the other hand, the line capacitance C can be

evaluated by the total energy We.

~= 2We

v’
(11)

where V means the potential at the upper conductor.

Therefore, the variational expression for the line capaci-

tance can be obtained by substituting (10) into (1 1).

In the above analysis, we have solved the Dirichlet type

boundary value problem in the Fourier transformed

domain (spectral domain), but if we were to solve this

problem directly, the relation between V(x) and @i(x,y)

would be a very complicated form that contains a con-

volution integral. This is one of the advantages of the

Fourier transform method (spectral domain approach)

over the conventional method.

Next, we must calculate the total electric energy stored

in this system. Applying the vector identity,

and Parseval’s relation [7],

Equation (12) provides the upper bounds on the line

capacitance, for the true static potential function @(x,y)

can give the absolute minimum energy We [8].

If we must find the charge distribution and/or the

potential distribution in the original domain, we shall

have to deal with the task of the inverse transformation

which is very difficult in general, but only the values of

the line capacitance is needed here. This is also one of the

merits of the Fourier transform method.

Once the line capacitance C and C’Oare evaluated for

the loaded and unloaded dielectric sheet, respectively, the

characteristic impedance Z and the guide wavelength A

can be obtained as follows:

(13)

(14)

where & means the wavelength in free space and



508 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-26, NO. 7, JULY 1978

TABLE I
COMPARISON OF CALCULATED VALUES ( = 1)

c/&. Exact Lower
values Bounds :%%ds ‘ii%%

2a/h Eq.(17) p(x)=lxl v(x)= l/x R-R (N=4)

(0-2 0.9311 0.9343 1.7533 1.1836

10““P 1.0015 1.0044 1,7545 1.1955

10-’6 1.0901 1.0856 j,7573 /.2202

lo+” 11848 1.1807 I,V633 1.2621

10-L2 I 2q74 1.2936 1.7’760 /.3338

10-’ 1.4337 1.4298 /.8020 1.4410

1207rco
zo=~=—

c@ co “
(15)

III. NUMERICAL RESULTS

By assuming the function of the potential distribution

V(x), the line capacitance can be calculated from (12).

Even though the formula (12) is a stationary one, we must

consider the choice of a trial function. It is advisable to

meet the physical boundary conditions as closely as possi-

ble, for this will help to obtain a trial field close to the true

field. Moreover, we should select such a trial field that has

a simple Fourier transform suitable for the numerical

calculation,

Needless to say, if we remove the dielectric sheet, the

conformal mapping method can be applied to obtain the

exact value [9]. So, the exact values compared with the

upper bounds and the lower bounds are summarized in

Table I. The lower bounds are calculated from the varia-

tional expression in which the charge distribution on the

conductor Q(x) is employed as a trial function, which is

assumed to be of the form Q(x)= Ixl [5]. In the calcula-

tion of the upper bounds, the trial function V(x)= 1/lx[

(lx] > a) was at first chosen, but a relatively large error

occurred (86,7 percent, at 2a/h= 10-2, for example). In

the cases where 2a/h <1 the singularity at the edges of

the upper conductor may be very significant. For a
“wide” strip the stored energy in the region Ixl > a may,

of course, diminish relatively and the approximate func-

tion V(x) = 1/lxl will give better results (2.4 percent at

2a/h = 10-14, for example).

In order to obtain the better upper bounds even when

2a/h<< 1, it is necessary to take account of the singularity

at the edges of the conductor. Therefore, the following

potential distribution will be suitable:

1v4 IxI-a

V(x)= % d ‘ a<lxl<a+d. (16)

()
++2, Ixl>a+d

Upon employing the trial function of (16), the error can

be supressed to 9.6 percent, even at 2a/h= 10-2, but the

Fourier transform of (16) becomes

.

~(~)=y”[sinl~l(a+d)– 2

m

{sin l~la.C(l~ld)+cos l/3/a.S(l/?ld)

+dl/31”cos l/31(a+d)+(dl /l/)2

. {COS ]~la~i(l~ld)+sin

where S(x), C(x), Si(.x), and

integral, Fresnel cosine integral,

lPlac~(lP14}
1

(17)

Ci(x) are Fresnel sine

sine integral, and cosine

integral, respectively. Since these functions are not ele-

mentary ones, a very long computation time is needed

(about 5 tin per one structure, for example). Hence, this

trial function is not practical.

For these reasons V(x) is expanded in terms of a

negative power series of x and the expansion coefficients

are determined by the Rayleigl-Ritz procedure.

V(X)=;+;+”””+*.
XN+I

(18)

The condition V(l) = 1 imposes a constraint among a’s,

because we can assume a= 1 without loss of generality.

a1+a2+ ””. +a~+l=l. (19)

Substituting (19) into (18),

( +J+”””+a&4d+#=V(x)=al ~–

(20)

The Fourier transform of (20) is given by (21).

fi(~)=~%(x)2 COS~X dx
o

=K(B)+al*l(B)+ ”.” +aN~~(~) (21)

where

and

403)=2~m(--j---+4 Cosbdx. (23

After substituting (21) into (12), C is expressed as the

quadratic form of a’s, and then a minimization of c with

respect to a’s, reduces the following matrix equation:

[C,]. [c$]= -[q.] (24)

where

cti=Jm+z(P)*(P) ~(B)@ (25)
o

~.=~~K(B)~z(/3)h(~)d~ (26)
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TABLE II

CHARACTERISTIC IMPEDANCES

z~ &’= 265 s“= 8?
Upper Lower Upper Lcwer

2~/~ Bound Bound Ebund ,Bound

1o-z 0.77+1 0.7031 0.4b65 0.4159

10’8 0.7208 0.6683 n433 0 0.3983

10+6 0.6402 0.6205 0.3998 0 3V84

lot’+ 06307 05931 0.3674 0.3540

I 0“2 0.5584 0.5413 0.3337 0.3265

IOi 0.5041 0.4958 0.3007 0. 2? 52

TARLE 111

GUIDE WAVELENGTHS

a~a
E* = 2.65 g*=gq

Upper Lower Upper Lower
Pa/h Bound ,Bound Bound ,Bound
,0-2 0.7269 0.6603 0.4381 0.3706

10-’8 0.7276 0.6749 0+372 0.4021

Lo-’ 6 0.7275 06764 0435’9 0.4[26

and

h(~)= ~(l+c”coth~h). (27) ‘1]

Thus the line capacitance is given by (28): [2]

Although nonelementary integral functions
[4]

f
ml

-- GOS ~X dx
1 x’

(29)

appear in (22) and (23), these integrals can be written in 151

terms of sine and cosine integrals, using a recursive for-

mula. Therefore, the computation time is almost the same [6]

as that for the case where IV= 1, i.e., V(x)= 1/1x1, requir-

ing, for example, only 3W35 s. The calculated values for [7]

N= 4 are provided in Table I.

Next, the characteristic impedance and the guide wave- [g]

length for e“ = 2.65 and 8.9 are calculated from (13) and ~gl

(14), and summarized in Tables II and III, respectively. It
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should be noted that the calculated values of the char=

acteristic impedance and guide wavelength are lower

bound to the true values because of the forms of (13) and

(14). In the cases where 2a/h<< 1, the absolute error of

more than 10 percent occurs. This error is mainly due to

the upperbounds values. The error, however, becomes less

than 2 percent for 2a/h= 10-1. Needless to say, the

accuracy of the calculated values can be improved by

increasing N. In most practical cases, a relatively wide

strip is used, so that we can conclude that the differences

between the lower bounds and the upper bounds are

negligibly small for practical purposes.

IV. CONCLUSION

We have analyzed the properties of the microstrip line

under the assumption of a quasi-TEM wave valid in the

low microwave frequencies. Our analytical approach is

based on variational calculation of the line capacitance in

the Fourier transformed domain. The potential distribu-

tion on the interface between the dielectric sheet and air

region has been utilized as a trial function; consequently,

the calculated values give the upper bounds. Although

results are poor for a very narrow microstrip line, they are

good for a moderately wide microstrip line. We have also

discussed the margins of error in the variational calcula-

tion.
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