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Upper Bound Calculations on Capacitance of
Microstrip Line Using Variational Method
and Spectral Domain Approach

KIYOMICHI ARAKI anp YOSHIYUKI NAITO, SENIOR MEMBER, [EEE

Abstract—In this paper, the authors have employed an analytical ap-
proach based on the Fourier transformation and variational techniques in
terms of the surface potential of the dielectric sheet to find the upper
bounds of the microstrip line capacitance. It is hoped that our work will
complement that of Yamashita ez al. 5], who calculated the lower bounds
dealing with the charge density on the surface of the conductor strip, in
estimating the margins of error in calcplation.

I. INTRODUCTION

LTHOUGH microwave circuits were based on the

waveguide system until the mid 1960’s, the strip line
system is now finding extensive application because of its
light weight and handiness. A variety of strip line struc-
tures are in use, especially the microstrip line shown in
Fig. 1(a).

An exact analysis based on a hybrid mode is desirable
in determining the parameters of the microstrip line in the
frequencies over around 10 GHz. However, in the
frequency ranges under X band, a quasi-TEM wave ap-
proximation is useful enough. By means of quasi-TEM
assumptions, the line capacitance values can be employed
in calculating the characteristic impedance and the guide
wavelength, so that it is necessary only to solve the
two-dimensional Laplace equation over the cross section
of the line.

Several solutions for the two-dimensional boundary
value problem involving two different media are already
known, for example, the modified conformal mapping
method [1], the integral equation method [2], [3}, the
relaxation method [4], and the variational method {5].
Recently, Wheeler [6] has given, with the extensive tables,
the simple explicit formulae for the characteristic imped-
ance and the guide wavelength as well as the attenuation
of the microstrip line.

Among them, the variational method provides not only
a highly precise calculation but also the upper and the
lower bounds on true values so that the margins of error
in the calculation can be estimated.

An analytical approach based on the Fourier transform
and variational techniques was initiated by Yamashita er
al. [5] in 1968. In their paper, they calculated the lower
bounds of the line capacitance dealing with the charge
density on the surface of the conductor strip.
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Fig. 1. Various strip lines.

Strictly speaking, not only the lower bounds but also
the upper bounds have to be examined to obtain an
approximate value through the variational method. This is
because a trial function cannot always be reliable. To
contain the margins of error within certain range, both
bounds are necessary.

In this paper, an analytical approach based on the
Fourier transform and variational techniques to find the
upper bounds of the microstrip line capacitance will be
discussed in terms of the surface potential of the dielectric
sheet,

II. ANALYSIS

It is profitable to use the Fourier transform in the
analysis of open structure transmission line shown in Fig.
2.
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Fig. 2. Line structure.

At first, the Fourier transform is applied to all field
quantities, i.e., static potential distributions ¢,(x.y) (i=
1.2) in the dielectric region as well as in the air region,
and V' (x) on the interface, respectively.

(B2)= [~ alxy)e dx (1)

V(8)= f_"‘;V(x)eJﬁx dx. @)

The static potential distributions ¢,(x,y) (i=1,2) satisfy
the Laplace equation in the individual regions:

a 2 2
Ix 2
Therefore, the transformed potential distributions ¢,(8,»)

(i=1,2) satisfy the following ordinary differential equa-
tion:

)¢ (x,7)=0. ()

(-BZ dy2)¢(ﬁy) 0. (4)
Considering the boundary conditions at both the ground
plane and the infinity as well as the continuity condition
on the interface (at y=~h), ¢,(8,y) can be expressed in
terms of V' ( 8) with the following equations:

B(BA=7 (B SRl (sa)
5 By) =V (B)elF1h, (5b)

In the above analysis, we have solved the Dirichlet type
boundary value problem in the Fourier transformed
domain (spectral domain), but if we were to solve this
problem directly, the relation between ¥V (x) and ¢,(x,y)
would be a very complicated form that contains a con-
volution integral. This is one of the advantages of the
Fourier transform method (spectral domain approach)
over the conventional method.

Next, we must calculate the total electric energy stored
in this system. Applying the vector identity,

9
f f (V.9) ds=sﬁ<1>—a% dl ~ f f $Vig ds (6)
and Parseval’s relation [7],
[T otowx)ax=5- " 4B (B) a8 (7)
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the energy in the dielectric region is expressed also in
terms of V' (3). Thus:

h poo ®© 8(;?)
Wel=%'j(; f_m(vt¢1)2 dxajz=%f_wq51—ay—l v:hdx
=t [ by dy(/iy) hdﬂ
=_2°_§*_f w|17(3)|2|g|- coth | B|h dB ®

where €* designates a dielectric constant of the substrate.
Similarly, the energy stored in the air region is given by

9):
Wez"%g nwfoo (Vt¢2)2 dx dy

€

-2 ¢2(x,y)a $2(x.0)], =4
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Accordingly, the total energy can be expressed by V(B).
We= We,+ We,

=2 [“ [P (B)PIBI-(1+¢* coth | Blh) dB. (10)

On the other hand, the line capacitance C can be
evaluated by the total energy We.

2W
Vze (11)

where ¥V means the potential at the upper conductor.
Therefore, the variational expression for the line capaci-
tance can be obtained by substituting (10) into (11).

oL [ 7 1P (BPIBI-(1+ e coth (B)H) dB. (12)

27 V2
Equation (12) prov1des the upper bounds on the line
capacitance, for the true static potential function ¢(x,y)
can give the absolute minimum energy We [8].

If we must find the charge distribution and/or the
potential distribution in the original domain, we shall
have to deal with the task of the inverse transformation
which is very difficult in general, but only the values of
the line capacitance is needed here. This is also one of the
merits of the Fourier transform method.

Once the line capacitance C and C, are evaluated for
the loaded and unloaded dielectric sheet, respectively, the
characteristic impedance Z and the guide wavelength A
can be obtained as follows:

C=

C=

C

Z=12, —50 (13)
[c

A=, ?" (14)

where A, means the wavelength in free space and
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TABLE 1
COMPARISON OF CALCULATED VALUES (= 1)
Cre| Exact Lower |Upper {Upper
Values |Bounds |Bounds |Bounds
294\ Eq.(17)  |p(x)=lxl [V(x)=1/x |R-R (N=4)
072 {0.9391 | 03343 |1.7533 | 1.183¢
10710095 | L0044 | 17545 | 11955
107 | 10901 | L0856 | 17573 | 2202
07| 11843 | 1807 | L.%e33 | (.262)
0% 12974 | 12936 | 17760 | }.3338
10 | 14337 | 14298 | .8020 | 194410
7 1 1207, 15)
0T Co G, (
III. NuMERICAL RESULTS

By assuming the function of the potential distribution
V' (x), the line capacitance can be calculated from (12).
Even though the formula (12) is a stationary one, we must
consider the choice of a trial function. It is advisable to
meet the physical boundary conditions as closely as possi-
ble, for this will help to obtain a trial field close to the true
field. Moreover, we should select such a trial field that has
a simple Fourier transform suitable for the numerical
calculation.

Needless to say, if we remove the dielectric sheet, the
conformal mapping method can be applied to obtain the
exact value [9]. So, the exact values compared with the
upper bounds and the lower bounds are summarized in
Table 1. The lower bounds are calculated from the varia-
tional expression in which the charge distribution on the
conductor Q(x) is employed as a trial function, which is
assumed to be of the form Q(x)=|x]| [5]. In the calcula-
tion of the upper bounds, the trial function V' (x)=1/|x|
(|x|>a) was at first chosen, but a relatively large error
occurred (86.7 percent, at 2a/h=10"2, for example). In
the cases where 2a/h<1 the singularity at the edges of
the upper conductor may be very significant. For a
“wide” strip the stored energy in the region |x|>a may,
of course, diminish relatively and the approximate func-
tion V(x)=1/|x| will give better results (2.4 percent at
2a/h= 10714, for example).

In order to obtain the better upper bounds even when
2a/h<«], it is necessary to take account of the singularity
at the edges of the conductor. Therefore, the following
potential distribution will be suitable:

1, |x|<a
_a., [
V(x)=<l 5 7 a<|x|<a+d (16)
1{ d ¥
g(___lx|—a)’ |x|>a+d

Upon employing the trial function of (16), the error can
be supressed to 9.6 percent, even at 2a/h=10"2, but the
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Fourier transform of (16) becomes

17(,3)='5-l%|‘ sin | B|(a+d)—

-2
ViBld

+{sin | Bla-C(| B|d)+cos | Bla-S (| B|d)
+d|B|-cos | Bl(a+d)+(d| B])’

+{cos | BlaSi(| B|d) +sin | BlaCi(|B[d)}|  (17)
where S(x), C(x), Si(x), and Ci(x) are Fresnel sine
integral, Fresnel cosine integral, sine integral, and cosine
integral, respectively. Since these functions are not ele-
mentary ones, a very long computation time is needed
(about 5 min per one structure, for example). Hence, this
trial function is not practical.

For these reasons V(x) is expanded in terms of a
negative power series of x and the expansion coefficients
are determined by the Rayleigh-Ritz procedure.
AN +1

N+1"

a a
V(x)=—xl+;§+---+x

(18)

The condition ¥ (1)=1 imposes a constraint among a’s,
because we can assume ¢ =1 without loss of generality.

(19)

atay+-+ay,, =1

Substituting (19) into (18),

_ 1 1 1 1 1
Ve=all )+ G
(20)
The Fourier transform of (20) is given by (21).

17(,8)=f0wV(x)2 cos Bx dx
=K(B)+a(B)+ - +ayn(B) (21

where
K(B)=2 Sh';ﬁ +2 Iw%iﬁf & (@)
and
¢;(B)=2flw(;l7—xNH)cos,Bxdx. (23)

After substituting (21) into (12), C is expressed as the
quadratic form of a’s, and then a minimization of C with
respect to &’s, reduces the following matrix equation:

[Col [a]=—1[4d] (24)

where
c,-,-=f0°°¢,(ﬁ)¢,(ﬁ)h(ﬁ)dﬁ (25)
c4=f0°°K(.8)¢,(ﬂ)h(B)dB (26)
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TABLE II
CHARACTERISTIC IMPEDANCES
2/7 g*= 265 g*= 89

Upper lLower Upper  Lower
2a/3\/Bound Bound |Bound Bound
1072 | 0.v74) | 0.7031 | 0.4b65 |0.4159
10%%| 6.7209 |0.6683 |04330 | 03983
10%% | 0.6402 | 0.6205 |0.3998 |03784
10| p 8307 |05931 [03674 |0.3540
j0*?| 0.5584 | 0.5413 | 03337 [0.3265
107 | 0.5041 | 0.495% |0.3007 |0.2952

TasLE HI
GUIDE WAVELENGTHS
A/A €% = 2,65 g¥=8q

° Upper Lower |Upper Lower

20/0\Bound Bound {Bound Bound
102 [ 0.7269 | 0.6603 [0438) |0.3906
10" 07276 |0.6749 | 04372 | 0.9021
107%1 07275 06764 04359 | 0.4126
10 o261 [ 07027 |0434F | 04194
10721 07244 | p.7023 |0.4329 [0.9236
107 |07224 | 0.7t08 |0.4311 |04232

and

h(B)=PB(1+€* coth Bh).
Thus the line capacitance is given by (28):

N [¢.¢]
C= 2 ad+ [“K(B)h(B)dp.
i=1
Although nonelementary integral functions
f Oo i, cos Bx dx
1 X

appear in (22) and (23), these integrals can be written in
terms of sine and cosine integrals, using a recursive for-
mula. Therefore, the computation time is almost the same
as that for the case where N=1, i.e., V' (x)=1/|x|, requir-
ing, for example, only 30-35 s. The calculated values for
N =4 are provided in Table I.

Next, the characteristic impedance and the guide wave-
length for e*=2.65 and 8.9 are calculated from (13) and
(14), and summarized in Tables IT and III, respectively. It
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should be noted that the calculated values of the char-
acteristic impedance and guide wavelength are lower
bound to the true values because of the forms of (13) and
(14). In the cases where 2a/h<1, the absolute error of
more than 10 percent occurs. This error is mainly due to
the upperbounds values. The error, however, becomes less
than 2 percent for 2a/h=10"". Needless to say, the
accuracy of the calculated values can be improved by
increasing N. In most practical cases, a relatively wide
strip is used, so that we can conclude that the differences
between the lower bounds and the upper bounds are
negligibly small for practical purposes.

IV. ConcLusioN

We have analyzed the properties of the microstrip line
under the assumption of a quasi-TEM wave valid in the
low microwave frequencies. Our analytical approach is
based on variational calculation of the line capacitance in
the Fourier transformed domain. The potential distribu-
tion on the interface between the dielectric sheet and air
region has been utilized as a trial function; consequently,
the calculated values give the upper bounds. Although
results are poor for a very narrow microstrip line, they are
good for a moderately wide microstrip line. We have also
discussed the margins of error in the variational calcula-
tion.
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